Noetherianity and Combination Problems

نویسندگان

  • Silvio Ghilardi
  • Enrica Nicolini
  • Silvio Ranise
  • Daniele Zucchelli
چکیده

In abstract algebra, a structure is said to be Noetherian if it does not admit infinite strictly ascending chains of congruences. In this paper, we adapt this notion to first-order logic by defining the class of Noetherian theories. Examples of theories in this class are Linear Arithmetics without ordering and the empty theory containing only a unary function symbol. Interestingly, it is possible to design a non-disjoint combination method for extensions of Noetherian theories. We investigate sufficient conditions for adding a temporal dimension to such theories in such a way that the decidability of the satisfiability problem for the quantifier-free fragment of the resulting temporal logic is guaranteed. This problem is firstly investigated for the case of Linear time Temporal Logic and then generalized to arbitrary modal/temporal logics whose propositional relativized satisfiability problem is decidable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The home marking problem and some related concepts

In this paper we study the home marking problem for Petri nets, and some related concepts to it like confluence, noetherianity, and state space inclusion. We show that the home marking problem for inhibitor Petri nets is undecidable. We relate then the existence of home markings to confluence and noetherianity and prove that confluent and noetherian Petri nets have an unique home marking. Final...

متن کامل

Noetherianity up to symmetry

These lecture notes for the 2013 CIME/CIRM summer school Combinatorial Algebraic Geometry deal with manifestly infinite-dimensional algebraic varieties with large symmetry groups. So large, in fact, that subvarieties stable under those symmetry groups are defined by finitely many orbits of equations—whence the title Noetherianity up to symmetry. It is not the purpose of these notes to give a sy...

متن کامل

From Non-Disjoint Combination to Satisfiability and Model-Checking of Infinite State Systems

(Joint work also with S. Ranise and D. Zucchelli).In the first part of our contribution, we review recent results on combined constraint satisfiability for first order theories in the non-disjoint signatures case: this is done mainly in view of the applications to temporal satisfiability and model-checking covered by the second part of our talk, but we also illustrate in more detail some case-s...

متن کامل

Canonical Bases for Algebraic Computations

We investigate, for quotients of the non-commutative polynomial ring, a property that implies finiteness of Gröbner bases computation, and examine its connection with Noetherianity. We propose a Gröbner bases theory for our factor algebras, of particular interest for one-sided ideals, and show a few applications, e.g. how to compute (one-sided) syzygy modules.

متن کامل

Noetherianity in a class of first-order theories

We call a theory a Dedekind theory if every complete quantifier-free type with one free variable either has a trivial positive part or it is isolated by a positive quantifier-free formula. The theory of vector spaces and the theory fields are examples. We prove that in a Dedekind theory all positive quantifier-free types are principal so, in a sense, Dedekind theories are Noetherian. We show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007